

Mr. GOPAL KRISHNA, Sr. Big Data Architect, BIGDATA Practice – CoE Lead 18+Years Of Real Time IT Exp, 11+Years On BIGDATA Projects Exp CLOUDERA CCA 175 – Spark and Hadoop Certified Consultant

HADOOP COURSE CONTENT – (HADOOP-1.X, 2.X & 3.X)

(Development, Administration & REAL TIME Projects Implementation)

Introduction to BIGDATA and HADOOP

- What is Big Data?
- What is Hadoop?
- Relation between Big Data and Hadoop.
- What is the need of going ahead with Hadoop?
- Scenarios to apt Hadoop Technology in REAL TIME Projects
- Challenges with Big Data
 - Storage
 - Processing
- How Hadoop is addressing Big Data Changes
- Comparison with Other Technologies
 - ➢ RDBMS
 - Data Warehouse
 - TeraData
- Different Components of Hadoop Echo System
 - Storage Components
 - Processing Components
- Importance of Hadoop Echo System Components in Real Time Projects
- Other solutions of Big Data
 - Introduction to NO SQL
 - ➢ NO SQL vs HADOOP
- Type of BigData Projects
 - On Premises project
 - Cloud Integrated Project
 - > Differences between On Premises & Cloud Integrated Projects

HDFS (Hadoop Distributed File System)

- What is a Cluster Environment?
- Cluster VsHadoop Cluster.
- Significance of HDFS in Hadoop
- Features of HDFS
- Storage aspects of HDFS

- Block the basic storage unit in hadoop
- How to Configure block size
- Default Vs Configurable Block size
- Why HDFS Block size so large?
- Design Principles of Block Size
- HDFS Architecture 5 Daemons of Hadoop
 - NameNode and its functionality
 - DataNode and its functionality
 - JobTracker and its functionality
 - TaskTrack and its functionality
 - Secondary Name Node and its functionality.
- Replication in Hadoop Fail Over Mechanism
 - Data Storage in Data Nodes
 - Fail Over Mechanism in Hadoop Replication
 - Replication Configuration
 - Custom Replication
 - Design Constraints with Replication Factor
 - Can we change the replication factor in Hadoop?
 - Can we change the block size for a file or directory in Hadoop?
- Accessing HDFS
 - CLI (Command Line Interface) and HDFS Commands
 - Java Based Approach
- Hadoop Archives
- Configuration files in Hadoop Installation and the Purpose
- How to & Where to Configure HadoopDaemons in a Hadoop Cluster?
- Difference between Hadoop 1.X.X , Hadoop 2.X.X& 3.X.X version
 - Name Node HA (High Availability in Hadoop 2.X.X)
 - Importance of NFS in Hadoop-2.X
 - Importance of Journal Nodes in Hadoop-2.X

MapReduce

- Why Map Reduce is essential in Hadoop?
- Processing Daemons of Hadoop
 - > Job Tracker
 - ✓ Roles Of Job Tracker
 - ✓ Drawbacks w.r.to Job Tracker failure in Hadoop Cluster
 - ✓ How to configure Job Tracker in Hadoop Cluster
 - > Task Tracker
 - ✓ Roles of Task Tracker
 - ✓ Drawbacks w.r.to Task Tracker Failure in Hadoop Cluster

- Input Split
 - ✓ InputSplit
 - ✓ Need Of Input Split in Map Reduce
 - ✓ InputSplit Size
 - ✓ InputSplit Size Vs Block Size
 - ✓ InputSplitVs Mappers
- Map Reduce Life Cycle
 - ✓ Communication Mechanism of Job Tracker & Task Tracker
 - ✓ Input Format Class
 - ✓ Record Reader Class
 - ✓ Success Case Scenarios
 - ✓ Failure Case Scenarios
 - ✓ Retry Mechanism in Map Reduce
- MapReduce Programming Model
 - Different phases of Map Reduce Algorithm
 - Different Data types in Map Reduce
 - ✓ Primitive Data types Vs Map Reduce Data types
 - How to write a basic Map Reduce Program
 - Driver Code
 - Mapper Code
 - Reducer Code
 - Driver Code
 - ✓ Importance of Driver Code in a Map Reduce program
 - ✓ How to Identify the Driver Code in Map Reduce program
 - ✓ Different sections of Driver code
 - Mapper Code
 - ✓ Importance of Mapper Phase in Map Reduce
 - ✓ How to Write a Mapper Class?
 - ✓ Methods in Mapper Class
 - Reducer Code
 - ✓ Importance of Reduce phase in Map Reduce
 - ✓ How to Write Reducer Class?
 - ✓ Methods in Reducer Class
 - **IDENTITY MAPPER & IDENTITY REDUCER**
 - Input Format's in Map Reduce
 - ✓ TextInputFormat
 - ✓ KeyValueTextInputFormat
 - \checkmark NLineInputFormat
 - ✓ DBInputFormat

- ✓ SequenceFileInputFormat.
- ✓ How to use the specific input format in Map Reduce
- ✓ How to write Custom Input Format Class and Custom Record Reader∖

• Output Format's in Map Reduce

- ✓ TextOutputFormat
- ✓ KeyValueTextOutputFormat
- ✓ NLineOutputFormat
- ✓ DBOutputFormat
- ✓ SequenceFileOutputFormat.
- ✓ How to use the specific Output format in Map Reduce
- ✓ How to write Custom Output Format Class and Custom Record Writer

Apache PIG

- Introduction to Apache Pig
- Map Reduce Vs Apache Pig
- SQL Vs Apache Pig
- Different datatypes in Pig
- Where to Use Map Reduce and PIG in REAL Time Hadoop Projects
- Modes Of Execution in Pig
 - ✓ Local Mode
 - ✓ Map Reduce OR Distributed Mode
- Execution Mechanism
 - ✓ Grunt Shell
 - ✓ Script
 - ✓ Embedded
 - Transformations in Pig
- How to write a simple pig script
- Parameter substitution in PIG Scripts
- XML Processing through PIG
- JSON Processing through PIG
- Importance of DEFINE Keyword in PIG
- How to develop the Complex Pig Script
- Bags , Tuples and fields in PIG
- UDFs in Pig
 - ✓ Need of using UDFs in PIG
 - ✓ How to use UDFs
 - ✓ REGISTER Key word in PIG
- Techniques to improve the performance and efficiency of Pig Latin Programs\

HIVE

- Hive Introduction
- Need of Apache HIVE in Hadoop
- When to choose MAP REDUCE , PIG & HIVE in REAL Time Project
- Hive Architecture
 - ✓ Driver
 - ✓ Compiler
 - ✓ Executor(Semantic Analyzer)
- Meta Store in Hive
 - ✓ Importance Of Hive Meta Store
 - ✓ Embedded Metastore VS External Metastore
 - ✓ Embedded metastore configuration
 - ✓ External metastore configuration
 - ✓ Communication mechanism with Metastore and configuration details
 - ✓ Drawbacks with Internal/Embedded metastore over External metastore
- Hive Integration with Hadoop
- Hive Query Language(Hive QL)
- Configuring Hive with MySQL MetaStore
- SQL VS Hive QL
- Data Slicing Mechanisms
 - ✓ Partitions In Hive
 - Static Partitioning in Hive and its performance trade offs
 - > Dynamic Partitioning in Hive and its performance trade offs
 - ✓ Buckets In Hive
 - ✓ Partitioning with Bucketing usage in Real Time Project Use Cases
 - ✓ Partitioning Vs Bucketing
 - ✓ Real Time Use Cases✓
- Collection Data Types in HIVE
 - ✓ Array
 - ✓ Struct
 - ✓ Map
 - ✓ Real Time Use Cases
- Conditional Functions in HIVE
 - ✓ Imporatnce of CASE Statement
 - ✓ Real Time Use Cases on CASE Statements
- DATE Functions in HIVE
 - ✓ Imporatnce of Date Functions
 - ✓ Real Time Use Cases on DATE Functions
- User Defined Functions(UDFs) in HIVE
 - ✓ UDFs

- ✓ UDAFs
- ✓ UDTFs
- ✓ Need of UDFs in HIVE
- Hive Serializer/Deserializer SerDe
- Semi Structured Data Processing Using Hive
- Semi Structured Data Processing through HIVE
 - ✓ XML Data Processing
 - ✓ Importance of XML Data Processing through HIVE in Real Time Projects
 - ✓ JSON (Java Script Object Notation) Data Processing through HIVE
 - ✓ Importance of JSON Data Processing through HIVE in Real Time Projects
 - \checkmark
- HIVE HBASE Integration
 - ✓ Importance of HIVE HBASE Integration with respect to Latency
 - ✓ Real Time Use Cases on Hive HBase Integration

SQOOP

- Introduction to Sqoop.
- MySQL client and Server Installation
- How to connect to Relational Database using Sqoop
- Performance Implications in SQOOP Import and how to improve the performance
- Performance Implications in SQOOP Export and how to improve the performance
- Different Sqoop Commands
 - Different flavors of Imports
 - Export
 - Hive-Imports
- SQOOP Incremental Load VS History Load & Limitations in Incremental Load

HBase

- Different BigData Solutions HadoopComparision with Not Only SQL(NO SQL)
- Hbase introduction
- HDFS VsHBase
- HBaseVs RDBMS
- HBaseVs Cassandra VS Mongo DB & Real Time Use Cases on applicability
- Hbaseusecases
- HbaseData modeling Elements
 - Column families
 - Column Qualifier Name
 - Row Key
- HBase Architecture
- Bulk Loading Operation with HBASE
 - Importance of **ImportTsv** Utility in HBase

- Real Time case study on the usage of ImportTSV Utility of HBase
- Clients
 - REST
 - Thrift
 - Java Based
 - Avro
- Map Reduce Integration
- Map Reduce over HBase
- HBase Admin
 - Schema Definition
 - Basic CRUD Operations
 - Client Side Buffering in HBase

Flume

- Flume Introduction
- Flume Architecture
- Flume Master , Flume Collector and Flume Agent
- Flume Configurations
- Real Time Use Case using Apache Flume
- Sentimental Data Analytics with respect to Social Media Data with Flume & Hive

Oozie

- Oozie Introduction
- OozieArchitectrure
- Oozie Configuration Files
- Oozie Job Submission
 - ✓ Workflow.xml
 - ✓ Coordinator.xml
 - ✓ job.coordinator.properties
 - ✓ Transit parameters in workflow.xml

YARN (Yet another Resource Negotiator) - Next Gen. Map Reduce

- What is YARN?
- Difference between Map Reduce & YARN
- YARN Architecture
 - ✓ Resource Manager
 - ✓ Application Master
 - ✓ Node Manager
- When should we go ahead with YARN
- YARN Process flow
- YARN Web UI

- Different Configuration Files for YARN
- How to access Map Reduce Job History Server and Importance of Historyserver
- Examples on YARN

Cloudera Impala

- What is Impala?
- How can we use Impala for Query Processing?
- When should we go ahead with Impala
- Data Analytics with respect to Hive Batch Processing VS Impala Real Time Processing
- REAL TIME Use Cases with Impala

MongoDB (As part of NoSQL Databases)

- Need of NoSQL Databases
- Relational VS Non-Relational Databases
- Introduction to MongoDB
- Features of MongoDB
- Installation of MongoDB
- Mongo DB Basic operations
- REAL Time Use Cases on HadoopData Processing & MongoDBStorage

Apache Cassandra

- Introduction to Cassandra
- Mongo DB Vs Cassandra
- Basic Operation using Cassandra
- Comparison among HBase , Mongo DB and Cassandra NO SQL DBs

Apache Kafka (A Distributed Message Queuing System)

- Introduction to Kafka
- Installation of Kafka
- Difference between MQ Vs Kafka
- Basic Operation using Kafkaand real time case study on Kafkausage

Apache Spark – with Scala Content

[As part of Hadoop Course]

Introduction to SCALA

- Why Scala
- ScalaVs Java
- Why Scala is a Hybrid Language
- Pre-Requisits for Scala Installation

SCALA Basics

- Scala Data types
- Scala Packages
- Runtime environment of Scala& Java
- Different IDE Support for Scala
- Control Structures

Interactive SCALA – SCALA Shell

- Scala REPL [Real Evaluate Print Loop]
- Writing Scala Scripts
- Compiling the Scala Programs
- Different IDEs for Scala

SCALA Type Less, Do More

- Var[variable] VS val[Value]
- Type Inference
- DataTyes in SCALA
- Type Casting in Scala

Conditional Statements in SCALA

- If expression
- If-else expression
- While Loop and Do...While Loop & difference between the two
- For loop , different forms of for loop in SCALA
- Pattern matching in SCALA & use of **case** and **match** keywords in SCALA

Functional Programing in SCALA

- What is Functional Programming
- Difference between Object Oriented and Functional Programing Paradigm
- Closures in Scala
- Currying Functions in Scala
- Higher Ordered Functions in Scala

SCALA Environment Set Up

- Scala set up on Linux
- Java Set Up
- Scala Set Up

SCALACollections

- List
- Set
- Map

SCALA Object Oriented Programming Introducton

SPARK

- Introduction to Spark
 - Motivation for Spark
 - Spark Vs Map Reduce Processing
 - Architecture Of Spark
 - Spark Shell Introduction
 - Creating Spark Context
 - File Operations in Spark Shell
 - Caching in Spark
 - Real time Examples of Spark
 - Introduction to Spark Components
 - ✓ Spark Core
 - ✓ Spark SQL
 - ✓ Spark Streaming
 - ✓ Spark MLLib
 - ✓ Spark Streaming
- Spark Core

Resilient Distributed Dataset[RDD]

- What is RDD and why it is important in Spark
- Core Features of RDD
 - 1. Lazily Evaluated
 - 2. Immutable
 - 3. Partitioned
- Different Operation on RDDs
 - 1. Transformations
 - 2. Actions
- Transformation in RDD
- Different Examples on Transformations
- Actions in RDD
- Different examples on Actions
- Loading Data through RDD
- Saving Data
- Key-Value pair RDD
- Pair RDD operations
- Running Spark in a Clustered Mode
- Deploying Application with spark-submit
- Cluster Management

Spark SQL

- Introduction to Spark SQL
- The SQL Context
- Hive Vs Spark SQL
- Introduction to Data Frames [DFs]
- Examples on Spark SQL

Different File Formats Processing through Spark SQL

- CSV
- JSON
- PARQUET
- ORC
- TEXT

Spark SQL Integrations

- Spark Hive Integration and Real Time use cases on the same
- Spark RDBMS Integration and Real Time use cases on the same
- Spark NO SQL Integration Introduction and Importance

Introduction toBig Data Project Integration with AWS Cloud

HADOOP ADMINISTRATION TOPICS

- Hadoop Single Node Cluster SetUp (Hands on Installation on Laptops)
 - ✓ Operating System Installation
 - ✓ JDK Installation
 - ✓ SSH Configuration.
 - ✓ Dedicated Group & User Creation
 - ✓ Hadoop Installation
 - ✓ Different Configuration Files Setting
 - ✓ Name node format
 - ✓ Starting the Hadoop Daemons
- Multi Node Hadoop Cluster Set Up (Hands on Installation on Laptops)
 - ✓ Network related settings
 - ✓ Hosts Configuration
 - ✓ Password less SSH Communication
 - ✓ Hadoop Installation
 - ✓ Configuration Files Setting
 - ✓ Name Node Format
 - ✓ Starting the Hadoop Daemons
- PIG Installation (Hands on Installation on Laptops)
 - ✓ Local Mode
 - ✓ Clustered Mode
 - ✓ Bashrc file configuration

- SQOOP Installation (Hands on Installation on Laptops)
 - ✓ Sqoop installation with MySQL Client
- HIVE Installation(Hands on Installation on Laptops)
 - ✓ Local Mode
 - ✓ Clustered Mode
- HBase Installation (Hands on Installation on Laptops)
 - Local Mode
 - Clustered Mode
- OOZIE Installation (Hands on Installation on Laptops)
- Mongo DB Installation (Hands on Installation on Laptops)
- SPARK Installation (Hands on Installation on Laptops)
- SCALA Installation (Hands on Installation on Laptops)
- Commissioning Of Nodes In Hadoop Cluster
- Decommissioning Of Nodes from Hadoop Cluster

PRE-REQUISITES FOR THE COURSE

- SQL Commands Basic Knowledge [FREE SQL Classes will be provided as part of the course itself]
- Linux Basic Commands [FREE Classes provided as part of course]
- Java Basics OOPs Concepts only [FREE Java OOPs Concept Classes will provided as part of course]

What we are offering as part of the Course?

- 3 REAL TIME Hadoop Projects End-to-End Explanation with architecture.
- Detailed Assistance in RESUME Preparation on a one-to-one basis with Real Time Projects based on your technical back ground.
- All the Real time interview questions and answers will be provided.
- Discussing the new happenings in Hadoop
- Discussing the Interview Questions on a daily basis
- Discussing Certification (CCA 175 Spark and Hadoop Certification) Related topics on a daily basis.
- Academic Projects will be provided for pursuing students